首页> 外文OA文献 >A global quantum duality principle for subgroups and homogeneous spaces
【2h】

A global quantum duality principle for subgroups and homogeneous spaces

机译:子群和齐次空间的全局量子对偶原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For a complex or real algebraic group G, with g:=Lie(G), quantizations ofglobal type are suitable Hopf algebras F_q[G] or U_q(g) over C[q,q^{-1}]. Anysuch quantization yields a structure of Poisson group on G, and one of Liebialgebra on g : correspondingly, one has dual Poisson groups G^* and a dualLie bialgebra g^*. In this context, we introduce suitable notions of quantumsubgroup and of quantum homogeneous space, in three versions: weak, proper andstrict (also called "flat" in the literature). The last two notions only applyto those subgroups which are coisotropic, and those homogeneous spaces whichare Poisson quotients; the first one instead has no restrictions. The global quantum duality principle (GQDP) - cf. [F. Gavarini, "The globalquantum duality principle", J. Reine Angew. Math. 612 (2007), 17-33] -associates with any global quantization of G, or of g, a global quantization ofg^*, or of G^*. In this paper we present a similar GQDP for quantum subgroupsor quantum homogeneous spaces. Roughly speaking, this associates with everyquantum subgroup, resp. quantum homogeneous space, of G, a quantum homogeneousspace, resp. a quantum subgroup, of G^*. The construction is tailored afterfour parallel paths - according to the different ways one has to algebraicallydescribe a subgroup or a homogeneous space - and is "functorial", in a naturalsense. Remarkably enough, the output of the constructions are always quantizationsof proper type. More precisely, the output is related to the input as follows:the former is the coisotropic dual of the coisotropic interior of the latter -a fact that extends the occurrence of Poisson duality in the GQDP for quantumgroups. Finally, when the input is a strict quantization then the output isstrict too - so the special role of strict quantizations is respected. We end the paper with some examples and application.
机译:对于具有g:= Lie(G)的复数或实数代数G,全局类型的量化适合于C [q,q ^ {-1}]的Hopf代数F_q [G]或U_q(g)。任何这样的量化都会在G上产生一个Poisson基团,在g上产生一个Liebialgebra结构:相应地,一个具有双重Poisson基团G ^ *和一个DualLie双代数g ^ *。在这种情况下,我们以三种形式介绍弱子,适当子和严格子(在文献中也称为“扁平”)的量子子群和量子同质空间的合适概念。后两个概念仅适用于各向同性的子群和泊松商数的齐次空间;相反,第一个没有限制。全局量子对偶原理(GQDP)-参见[F。 Gavarini,“全球量子对偶原理”,J。Reine Angew。数学。 612(2007),17-33]-与G或g的任何全局量化,g ^ *或G ^ *的全局量化相关。在本文中,我们为量子子群或量子同质空间提出了类似的GQDP。粗略地说,这与每个量子子组有关。 G的量子同质空间,分别是量子同质空间。 G ^ *的一个量子子群。该构造是根据四个平行路径(根据必须用代数描述一个子群或齐次空间的不同方式)量身定制的,并且自然而然地是“功能性的”。足够明显的是,结构的输出始终是适当类型的量化。更确切地说,输出与输入的关系如下:前者是后者的各向同性内部的同向对偶-这一事实扩展了量子组在GQDP中泊松对偶性的发生。最后,当输入是严格的量化时,输出也同样是严格的-因此,必须遵守严格的量化的特殊作用。我们以一些示例和应用结尾。

著录项

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号